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Abstract. We present a theoretical description of the branch orientation and the geometry of
walker flux lines in diffusion limited aggregation (DLA). It is based on the self-similarity and
non-directedness of the branch structure and explains recent numerical results on the probability
distribution of the branch orientation and the angle of particle attachment. Our results support the
idea that asymptotically large off-latticeDLA clusters are locally isotropic and every individual
walker flux line exhibits a certain type of self-similarity.

1. Introduction

The diffusion-limited aggregation (DLA) [1] is one of the most important stochastic fractal
growth models [2]. Despite intensive study, few analytical results exist. In this paper, we
suggest a convolution equation describing the branch orientation and the geometry of the
walker flux lines inDLA. It explains recent numerical findings on the probability distribution
of the angle of attachment of the walkers [3]. This work focuses on off-latticeDLA.

Witten and Sander [1] first proposed that the geometry ofDLA is scale invariant. The
two-point density–density correlation function falls off with distance in the form of a power
law for length scales between that of the cluster and the constituent particles. However,
Meakin and Viscek [4] subsequently found that the density correlation is anisotropic even
for off-lattice DLA. When grown in the radial geometry, the tangential correlation decays
algebraically with an exponentα⊥ ' 0.41, which is different from the radial exponent
α‖ ' 0.29. They also concluded from their extrapolation that the difference in the exponents
is not due to finite-size effects. As a result, there had been a general belief thatDLA is
self-affine.

However, the self-affine hypothesis ofDLA does not seem to be intuitively satisfactory.
If we assume self-affinity, anisotropically magnified segments ofDLA should be statistically
similar to other larger segments. We may naturally expect that the particle flux lines and
the equipotential lines for the magnified segments can be obtained by the same anisotropic
rescaling. This is because those lines are critical in the growth process and it is hard to
believe that do not conform to scalings similar to that of the cluster. However, this results
in flux lines crossing the equipotential lines at angles other than 90◦ since anisotropic
magnification is not an orthogonal transformation, and this is impossible.

Besides the correlation functions, the branch orientation can also characterize the
anisotropy ofDLA. Mandelbrot and Vicsek [9] constructed a directed recursive fractal model
for diffusion-limited deposition in which all branches at every level subtend acute angles
with the upward vertical direction. Their model illustrates how a fractal can have anisotropic
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density correlation, although it can be shown that the exponents for the power-law decay of
the correlation function remain isotropic. In contrast, we suggest that the branch structure
of DLA is non-directed. After many levels of side-branching, the side branches point in all
directions. Asymptotically largeDLA clusters are locally isotropic. The situation is similar
to the case of the Koch curve.

The rest of the paper is organized as follows. Section 2 summarizes recent numerical
results on the branch orientation and the angle of attachment forDLA. Section 3 derives
properties of the Koch curve which can be associated with the numerical results for the
branch orientation ofDLA. In section 4, numerical results on the probability distribution
of the angle of attachment are explained using a convolution equation. Section 5 suggests
plausible realizations of the equation which give physically acceptable results. Section 6
discusses a related self-similarity of the walker flux lines. We conclude with some further
discussions in section 7.

2. Recent numerical results on local isotropy

One way to test the isotropy, motivated by Mandelbrot and Vicsek’s directed recursive model
of DLA [9], is to measure the probability distributionP(φ) of the branch orientation angle,φ,
which is the angle subtended between the direction of a branch and the outward local radial
direction. The numerical measurements on the branch orientation angle were carried out by
Lam et al [3]. They adopted the Horton–Strahler scheme of branch definition and ordering.
The branch orientation angleφ is measured counterclockwise from the position vector
pointing from the centre of the cluster to the base of the branch to the branch-orientation
vector pointing from the base to the tip of the branch [3]. If a branch points radially
outward, inward, or tangentially, we have respectivelyφ ' 0, ±π or ±π/2, respectively.
The directed recursive model predicts that at all levels of side-branching, the proportion of
the forward pointing branches is more than that of the backward ones. Alternatively, the
local isotropy ofDLA requires that the proportions should be equal asymptotically andP(φ)

should approach a constant function for high-order side branches.
Lam et al computed the distributionP(φ) for various branch orders [3]. They found

that while the low-order main stems point radially outward, the high-order side branches
follow much more isotropic distributions. There is a clear trend thatP(φ) tends to the
uniform distribution as the branch order increases. Another interesting observation is that
the distributions for the highest branch orders investigated fit well to cosine functions of
small amplitudes in the form:

P(φ) = 1

2π
+ a cos(φ) . (1)

We will suggest an explanation for this observation in section 3.
A related approach to investigate the isotropy is to measure the probability distribution

of the angle of particle attachmentθ . This angle was also studied by Hegger and
Grassberger [6]. Our discussions will concentrate on Lamet al’s results [3] which contain
analysis relevant to the present work. During the growth ofDLA, a sticking event occurs
when a new random walker joins the cluster. The particle in the cluster which the walker
adheres to is called the parent of the new particle. The attachment direction points from the
centre of the parent to that of the new particle. The angle of attachmentθ is defined as the
angle subtended from the attachment direction to the outward radial direction which points
from the centre of the cluster to that of the parent. Similarly to the case of the branch-
orientation angle, forward, backward or tangential attachments correspond, respectively, to
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θ ' 0, ±π or ±π/2. Let P(θ, N) be the probability distribution ofθ as a function of the
cluster sizeN . The numerical result ofP(θ, N) [3] also shows a clear trend towards the
uniform distribution asN increases. In addition, from the cosine expansion:

P(θ, N) = 1

2π
+

∞∑
n=1

an(N) cos(nθ) (2)

it was found that the coefficients fall off in simple algebraic forms forN & 300:

an(N) ' AnN
−γn (3)

for n = 1 and 2, whereγ1 = 0.0997(3), A1 = 0.309(2), γ2 = 0.67(3) and A2 = 1.2(3).
The bracketed values are the fitting errors. However, forn > 3, thean(N)’s are too small
to be measured. For the largest value ofN = 614 400 investigated, the lowest harmonic
dominates so overwhelmingly thatP(θ, N) has converged to the cosine distribution:

P(θ, N) = 1/2π + a1(N) cos(θ) (4)

within their numerical errors. Extrapolation of (3) and (4) shows that asymptotically the
distribution approaches the constant function corresponding to locally isotropic attachment
process. We will present a possible explanation for equations (3) and (4) in section 4.

3. Branch orientation: analogy with the Koch curve

The cosine distributions for both the branch orientation and the angle of attachment in (1)
and (4) are rather rare cases in which any properties ofDLA fit nicely to simple non-trivial
functional forms. We suggest that they result from the non-directed branch structure. We
now derive an analogous discrete cosine distribution for the segment orientations of the
Koch curve, which is also non-directed. We suggest that similar arguments also describe
the branch orientation ofDLA.

For the Koch curve, a segment can only take one of the six orientations corresponding
to 0, π/3, . . . 5π/3. The probability distribution of the orientation can be specified simply
by a column vectorP with six elements. Thenth element(n = 0 to 5) of P specifies
the fraction of the segments with orientationnπ/3. Let us start with an upward facing
generator corresponding to a 0 orientation angle. At this initial stage, the distribution isP1 =
(1, 0, 0, 0, 0, 0)t . For the second generation with four segments, two of them keep the same
orientation while the other two are rotated by±π/3. Therefore,P2 = ( 1

2, 1
4, 0, 0, 0, 1

4)t .
In general, for each increment in the number of generations, every segment splits into four
and two of them are rotated byπ/3 in either direction irrespective to any fixed reference
direction or history of splitting. Therefore, the distributionPl+1 for the (l + 1)th generation
pre-fractal relates toPl linearly in the form

Pl+1 = APl (5)

where A is the tridiagonal matrix:

A = 1
4


2 1 0 0 0 1
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
1 0 0 0 1 2

 . (6)
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The evolution fromPl to Pl+1 is mathematically equivalent to a discrete random walk on a
ring with six sites. The normal modes are the harmonics. For largel, the lowest harmonic
dominates and the distribution converges to

[Pl ]n = 1

6
+ 1√

3

(
3

4

)l

cos
(nπ

3

)
(7)

where [Pl ]n denotes thenth element ofPl . Therefore, for sufficiently high generations,
the distribution of the segment orientation is approximately a discrete cosine. In addition,
the amplitude of the cosine term decreases exponentially with respect to the number of
generationsl and the distribution converges to the uniform one asymptotically.

As a result, both the distributions of the branch orientation forDLA and that of the
segment orientation for the Koch curve in (1) and (7), respectively, are cosines. This does
not seem to be a coincidence and we aware of no alternative explanation for (1). We suggest
that DLA is non-directed similarly to the Koch curve and the above derivation of the cosine
distribution for the Koch curve can be applied to give (1).

The cosine distribution is a consequence of the history-independent rotations of the
segments as the number of generations increases. The angle of rotation is±π/3. For DLA,
analogous angle of rotation is the angle subtended between a side branch and its parent
branch and is a stochastic variable. Adopting a variant of the Horton–Strahler branch
ordering scheme, Ossadnik [7] found numerically that for very large clusters the average
branch subtending angle is about±38◦. For DLA, the distributionP(φ) is a continuous
function and (5) has to be replaced by a convolution equation. Although the quantitative
form of the propagator, which is analogous to the matrixA in (6), is unknown, important
features of the solution including the cosine distribution (1) at high branch orders can
similarly be derived.

Equation (7) predicts that the amplitude of the cosine distribution decreases
exponentially with respect to the number of generationsl. However, the numerical value
of the corresponding amplitude of the cosine distribution for the branch orientation angle
does not decrease exponentially with the branch order [3]. This is possibly due to finite-size
effects resulting from considerable short range history dependence in the branching process.
In fact, the radial main stems physically forbid some of the higher order branches to lie
radially. This exclusion is also the cause of the noticeable dip in the distribution ofP(φ)

aroundφ = 0 for the low-order branches [3]. The dip disappears at higher orders indicating
that the history dependence only extends up to a small number of orders. We expect that
using sufficiently large clusters, the exponential decay of the amplitude with respect to the
branch order can be observed numerically.

4. Angle of attachment

The interesting numerical results on the distribution of the angle of attachment obtained by
Lam et al [3] in (2) and (3) can be derived similarly by assuming the non-directed branch
structure ofDLA. Our discussions will be based on the following picture ofDLA growth.
To add a particle to the cluster, the Laplacian potential is solved to obtain the walker flux
lines. A new particle is initially positioned randomly with uniform probability on a big
circle centred at the seed of the cluster. It subsequently traces the flux line deterministically
towards the cluster until it hits and becomes part of it. The direction of the attachment
is thus tangential to the flux line at the point of contact. This approach is mathematically
equivalent to the random walker method. Figure 1 shows 200 flux lines with uniformly
spaced starting positions. They are all equally likely representations of the next growth
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step. We will concentrate on the statistical nature of the geometry of these flux lines. Our
arguments can also be adapted to describe the field lines for the Laplacian potential around
the Koch curve.

Since the details of the cluster have little influence on the potential far away, starting
from infinity a flux line extends radially inward until it is close enough to be affected by
the geometry of the a main branch. At this stage, the geometry of the side branches is
unimportant. Depending on the position of the flux line relative to the nearest main branch,
it either keeps approaching the branch radially or turns to approach the branch from one
of the sides. After extending further towards the cluster, the geometry of the nearest side
branch becomes important. Again, the flux line extends either towards the tip or turns to
one of the sides of the closest side branch. Similar situations recur for higher and higher
order side branches until the geometry of the constituent particles becomes relevant.

If a flux line is perfectly straight pointing radially from infinity to the cluster, the
corresponding angle of attachmentθ is 0 according to Lamet al’s definition [3] summarized
in section 2. In general, every flux line curves and it can be shown thatθ is approximately
the sum of all the turns along the whole curve, apart from an unimportant additive term.
From the above simple picture that a flux line turns whenever it is affected by a further
level of side-branching, the total number of turns in a flux line is related to the total
number of levels of side-branching it encounters. Since this is a stochastic variable, we
consider the average over all the flux lines weighted by their probability. As a result, the
average number of turns in a flux line is proportional to the average number of branch
levels the line encounters, which is in turn proportional to the total number of branch levels
in the whole cluster. In the radial geometry, the number of branch levels is proportional
to τ = ln N [8, 7]. Therefore, there will be on average an additional turn on a flux line
wheneverτ increases by a constant amount denoted by1τ or the cluster sizeN increases
by a constant factor exp(1τ). Let 1θ be the additional turn for a particular flux line. The
corresponding angle of attachment, which could have been, say,θ ′ without the additional
turn, now becomesθ = θ ′ + 1θ . Let us reparametrize the distributionP(θ, N) to P(θ, τ ).
Assuming that the turns in every flux line are uncorrelated or history-independent, due to
the additional turn caused by an increase in the cluster size,P(θ, τ ) evolves according to
the convolution equation:

P(θ, τ + 1τ) =
∫ π

−π

G(θ − θ ′, 1τ)P (θ ′, τ ) dθ ′ (8)

which is a continuous version of the matrix equation (5). The propagatorG(1θ, 1τ) which
is analogous to the matrixA in (6) is the probability distribution the additional turn1θ .
We have assumed thatG does not depend onτ . This results from the self-similarity ofDLA

which implies that the flux line encounters statistically similar structures and turns similarly
at various levels of side-branching.

Equation (8) can be studied similarly to (5). SinceG(1θ) = G(−1θ), the propagator
admits the cosine expansion:

G(1θ) = 1

2π
+

∞∑
n=1

Gn

π
cos(n1θ) . (9)

Using the expansion, the solution of the convolution equation (8) is found to be precisely
the numerical findings for the distribution of the angle of attachment summarized in (2) and
(3) with

γn = − ln Gn/1τ . (10)
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The power-law decay of the amplitude with respect toN in (3) is an exponential decay with
respect toτ = ln N which is proportional to the number of branch orders in the cluster as
explained above. This is analogous to the exponential decay of the amplitude with respect
to the number of generationsl in (7) for the Koch curve. We expect that the propagator
is a smooth function. Therefore,Gn decreases quickly withn and explains why the decay
rateγn is much larger for higher harmonics.

5. Propagation of walker flux lines

We have already suggested an explanation for the power-law decay of the amplitudes in
the cosine expansion of the distribution of the angle of attachment. However, calculating
theoretically the decay exponentsγn requires knowledge of the propagatorG. Any direct
numerical determination ofG to verify (10) requires computation of the flux lines for
very large clusters, which is well beyond the capability of conventional methods [2].
Alternatively, we can gain some insight by examining simple plausible forms ofG.

We first consider the simplest case that every turn1θ is much smaller thanπ so thatG
is in the form of a narrow peak. Forτ larger than1τ , equation (8) reduces to the diffusion
equation:

∂

∂τ
P (θ, τ ) = ν

∂2

∂θ2
P(θ, τ ) (11)

whereν is the diffusion coefficient depending on the width ofG. The diffusion equation
givesγn = νn2, implying thatγ2/γ1 = 4. This value has the correct order but is significantly
different from the numerical value 6.7(3) [3].

We also tried Gaussian forms ofG with larger width. However, the resulting values
of γ2/γ1 are only slightly bigger than 4. We then consider the next simplest form of a
modified Gaussian:

G(1θ) ∼ exp[−(1θ/θ0)
4] (12)

and finally we are able to match the numerical value ofγ2/γ1. By also matching bothγ1

and γ2 computed from (10) simultaneously with the numerical values from Lamet al [3]
summarized in section 2, we obtainθ0 ' 94◦ and1τ ' ln 130. A plausible propagator in
the form of (12) is thus determined. From equation (12), the average magnitude of a turn
is 〈|1θ |〉 ' 0.49θ0 ' 46◦. It means that a flux line typically turns through an additional
angle of about±46◦ wheneverN increases by a factor of exp(1τ) ' 130. For a cluster of
size N = 106, each flux line has on averageNt ' ln N/1τ ' 2.8 turns. We also tried a
very different form ofG which is the sum of two Gaussians:

G(1θ) ∼ exp

[
− (1θ − θ1)

2

2σ 2

]
+ exp

[
− (1θ + θ1)

2

2σ 2

]
. (13)

The result is quite insensitive to the value ofσ provided it is in a reasonable range such as
5◦ to 30◦ and we takeσ = 10◦. Matchingγ1 andγ2 similarly gives〈|1θ |〉 ' θ1 ' 41◦ and
the number of turnsNt ' 4.0. There are infinitely many other possible functional forms of
G which are consistent with the numerical values ofγ1 andγ2 and we have no means to
discriminate them.

The average magnitude of the turns〈|1θ |〉 is dictated by the branch structure and should
be roughly equal to the angle subtended between the side branches and the parent branches.
It is quite interesting that the two simple choices of trial propagator give sensible values of
〈|1θ |〉 ' 46 and 41 obtained above, since they are not far from Ossadnik’s result on the
branch subtending angle which is 38◦.
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The average number of turnsNt in a flux line was estimated above to be about 2.8 or 4.0
respectively, for the two trial propagators for a million particle cluster. Recall thatNt equals
approximately the number of levels of side branches a flux line encounters when it extends
from infinitely to the cluster. The maximum branch order in a cluster of a million particles
was found to be approximately 10 by Ossadnik [7]. However, most flux lines terminate at
the outer regions of the cluster so that they encounter only a very limited number of levels.
As a result,Nt should be much smaller than 10. It seems thatNt ' 3 or 4 are reasonable
estimates.

6. Self-similarity of walker flux lines

Visual examination of the flux lines in figure 1 indicates that they are in general smooth
curves. However, they bend more and more frequently at regions closer and closer to the
cluster. We suggest that due to the self-similarity ofDLA every individual walker flux line
obeys some type of scaling for length scales between those of an individual particle and the
cluster. We emphasize that the self-similarity concerned is only restricted to segments of the
flux line containing the point of contact of the line with the cluster. Specifically, a segment

Figure 1. Example of 200 particle probability flux lines with uniformly spaced starting position
on a circle of radius 4RG, whereRG is the radius of gyration of the above one million particle
DLA cluster. The potential was solved by an over-relaxation method in a circular region of radius
4RG on a grid with lattice spacing 8RG/7000. The displayed region has radius 2RG.
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of a flux line which contains the point of contact and has a length much shorter than the
radius of the cluster but much larger than that of the walkers is self-similar. Assume that
we partition it further into two pieces. The partition which contains the point of contact is a
random curve which is statistically similar to the original segment after proper rescaling back
to the origin length. This type of self-similarity is similar to that of a spiral. A segment
of a spiral containing the centre resembles the original spiral after proper magnification.
However, an arbitrary segment of a spiral can simply be an arc, for example, and is not
necessarily similar to the original spiral.

The motivation for the above self-similarity of the flux lines is as follows. As explained
in section 4, while a flux line extends from infinity to the cluster, it bends whenever it
encounters a deeper level of side-branching. We have explained that there is an additional
turn whenever the cluster size increases by a factor of exp(1τ) so that the radius of the
cluster increases by a factor ofr = exp(1τ)1/D, whereD ' 1.72 is the fractal dimension
of DLA. Whenever the flux line starts to be affected by a higher level of side-branching as
it extends towards the cluster, it encounters similar structures but scaled down by a factor
of r due to the self-similar hypothesis ofDLA. Let l be the length of the segment of the flux
line between theith and the(i +1)th turn. The length of the segment between the(i +1)th
and the(i + 2)th turn is thusl/r.

We can now construct a very simple model to highlight the self-similar geometry of the
flux lines at length scales in between that of the cluster and the walkers. We start from the
region further away from the cluster with a straight line of lengthl0. To extend it to regions
closer to the cluster, we join it end-to-end to another line segment of lengthl0/r. The
angle subtended between the two line segments is a random variableθ sampled from a trial
propagator such as the modified Gaussian distribution in (12) with parameters specified in
section 5. Thenr = exp(1τ)1/D ' 17 where1τ = ln 130, obtained in section 5, is used.
We can similarly join further segments to the model flux line. Theith segment has length
l0/r(i−1) and subtends an independent random angle sampled from (12) with the(i − 1)th
segment. Since the scale factorr = 17 is indeed quite large, after adding a few segments,
the curve converges quickly to a point representing the point of contact of the flux line with
the cluster. Such a model flux line, after proper smoothing, is expected to have statistical
properties approximating those of real flux lines.

7. Discussions

We have suggested a theoretical description of the branch structure and the geometry of
the walker flux lines inDLA to describe the numerical results on the probability distribution
of the branch orientation and the angle of attachment. In particular, the cosine probability
distribution for the angle of attachment and the power-law decay of its amplitude with respect
to the cluster size are reproduced by a simple convolution equation. Both extrapolations
from the numerical results of Lamet al [3] and our present arguments support asymptotic
local isotropy ofDLA. They are consistent with the hypothesis that the local structure ofDLA

is non-directed. As far as isotropy is concerned,DLA is more similar to the Koch curve than
the directed recursive model [9]. We also suggest that every single flux line is self-similar.

As pointed out in [3], availableDLA clusters are strongly anisotropic and the approach
to isotropy for increasing cluster size is extremely slow. The anisotropy decreases when
there are more levels of side-branching in the cluster. The slow convergence to isotropy
is because there are only about 10 levels of side-branching even in a cluster of a million
particles [7]. Moreover, section 5 explained that only about 3 or 4 of them are close enough
to the outer regions of the cluster to be contacted by flux lines of considerable weight and
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be relevant to the growth. In addition, the angle subtended between branches is only about
38◦ [7]. The small angle also leads to inefficient randomization of the orientations of the
branches and contributes to the extremely slow crossover.

Since the magnitude of the local anisotropy depends on the number of levels of side-
branching in the cluster, forDLA in radial geometry, when the number of levels increases by
adding more particles, the anisotropy diminishes. For the case of cylindrical geometry, or
diffusion-limited deposition, investigated numerically by Hegger and Grassberger [6], at the
early stage of deposition, the amplitude of the distribution of the angle of attachment decays
similarly with respect to the cluster size with an exponentα. Due to a different relationship
between the total number of branch levels and the cluster size in this configuration,α is
different from our exponentγ1 and is given byα = γ1D/(D − 1) whereD is the fractal
dimension ofDLA. Their numerical value ofα is in good agreement with Lamet al’s γ1

[3] as expected from the hypothesis that the local properties ofDLA is independent of the
overall boundary conditions. When the height of the cluster is comparable to the width for
the case of deposition, the number of levels of branching ceases to increase further and the
anisotropy should converge to a finite magnitude instead of vanishing as forDLA. Hegger
et al also measured the orientation of the last step of a walker before sticking. From simple
geometrical argument, this angle differs from the angle of attachment by a random additive
term of small magnitude. Therefore, all the statistics are similar.

The conclusion of asymptotic local isotropy contradicts the claim of self-affinity based
on Meakin and Vicsek’s density correlation measurements [4] mentioned in section 1. We
expect that this is due to strong finite-size effects in their measurements. LetCR(r) be
the correlation between two points separated by a distancer in a cluster of radiusR. If
1 � r � R is well satisfied using much bigger clusters, isotropy in the scaling of the
correlation function may be achieved. In contrast, the self-affinity hypothesis requires
the scaling to be anisotropic, in particular, in this regime since Meakin and Vicsek’s
investigation covers both the casesr � R andr ∼ R. The condition 1� r is necessary to
avoid discretization effects so that scaling in the correlation function can be possible. On
the other hand,r � R corresponds to locality and is a necessary condition for isotropy.
This condition is necessary even for the simple Koch curve to reveal its locally isotropic
property as explained in section 3. In view of the slow approach to local isotropy, observing
the convergence of the radial and tangential decay exponent of the density correlation is
extremely difficult. In addition, the correlation measurement is actually not quite suitable for
isotropy testing because it does not discriminate the radially outward and inward directions
while the attachment probabilities in these two directions happen to be most different.

There are other numerical results which lead to conclusion of local anisotropy ofDLA [9].
Detailed investigation of these methods is beyond the scope of this paper. However, due
to the extremely slow convergence to local isotropy, the apparent local anisotropy may
result from finite-size effects. Finite-size effects in various measurements ofDLA have been
discussed recently [10].

Laplacian growth can be formulated by complex analytical methods by defining a
conformal mapf (z) from the unit disc in the complex plane to the region outside the
cluster [11]. The angle of attachment is precisely the argument off ′(z) evaluated at an
appropriate point on the unit circle. It can be shown that the convolution equation (8)
implies interesting properties of the coefficients in the power series expansion off ′(z).
However, we have not been able to obtain further physical predictions in this scheme.
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